Terminal PEGylated DNA–Gold Nanoparticle Conjugates Offering High Resistance to Nuclease Degradation and Efficient Intracellular Delivery of DNA Binding Agents

نویسندگان

  • Lei Song
  • Yuan Guo
  • Deborah Roebuck
  • Chun Chen
  • Min Yang
  • Zhongqiang Yang
  • Sreejesh Sreedharan
  • Caroline Glover
  • Jim A. Thomas
  • Dongsheng Liu
  • Shengrong Guo
  • Rongjun Chen
  • Dejian Zhou
چکیده

Over the past 10 years, polyvalent DNA-gold nanoparticle (DNA-GNP) conjugate has been demonstrated as an efficient, universal nanocarrier for drug and gene delivery with high uptake by over 50 different types of primary and cancer cell lines. A barrier limiting its in vivo effectiveness is limited resistance to nuclease degradation and nonspecific interaction with blood serum contents. Herein we show that terminal PEGylation of the complementary DNA strand hybridized to a polyvalent DNA-GNP conjugate can eliminate nonspecific adsorption of serum proteins and greatly increases its resistance against DNase I-based degradation. The PEGylated DNA-GNP conjugate still retains a high cell uptake property, making it an attractive intracellular delivery nanocarrier for DNA binding reagents. We show that it can be used for successful intracellular delivery of doxorubicin, a widely used clinical cancer chemotherapeutic drug. Moreover, it can be used for efficient delivery of some cell-membrane-impermeable reagents such as propidium iodide (a DNA intercalating fluorescent dye currently limited to the use of staining dead cells only) and a diruthenium complex (a DNA groove binder), for successful staining of live cells.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inhibition of Xenograft Tumor Growth by Gold Nanoparticle-DNA Oligonucleotide Conjugates-Assisted Delivery of BAX mRNA

Use of non-biological agents for mRNA delivery into living systems in order to induce heterologous expression of functional proteins may provide more advantages than the use of DNA and/or biological vectors for delivery. However, the low efficiency of mRNA delivery into live animals, using non-biological systems, has hampered the use of mRNA as a therapeutic molecule. Here, we show that gold na...

متن کامل

Oligonucleotide-modified gold nanoparticles for intracellular gene regulation.

We describe the use of gold nanoparticle-oligonucleotide complexes as intracellular gene regulation agents for the control of protein expression in cells. These oligonucleotide-modified nanoparticles have affinity constants for complementary nucleic acids that are higher than their unmodified oligonucleotide counterparts, are less susceptible to degradation by nuclease activity, exhibit greater...

متن کامل

Raster image cross-correlation analysis for spatiotemporal visualization of intracellular degradation activities against exogenous DNAs

Reducing intracellular DNA degradation is critical to enhance the efficiency of gene therapy. Exogenous DNA incorporation into cells is strictly blocked by the defense machinery of intracellular nuclease activity. Raster image correlation spectroscopy (RICS) and raster image cross-correlation spectroscopy (cross-correlation RICS; ccRICS) are image-based correlation methods. These powerful tools...

متن کامل

Stability of gold nanoparticle-bound DNA toward biological, physical, and chemical agents.

Positively charged trimethylammonium-modified mixed monolayer protected clusters (MMPCs) interact with DNA by complementary electrostatic binding, serving as efficient DNA delivery systems. The stability of gold nanoparticle-bound DNA toward biological, physical, and chemical agents is investigated. The MMPC-bound DNA is efficiently protected from DNAse I digestion and experiences nicking/cleav...

متن کامل

Selective covalent conjugation of phosphorothioate DNA oligonucleotides with streptavidin.

Protein-DNA conjugates have found numerous applications in the field of diagnostics and nanobiotechnology, however, their intrinsic susceptibility to DNA degradation by nucleases represents a major obstacle for many applications. We here report the selective covalent conjugation of the protein streptavidin (STV) with phosphorothioate oligonucleotides (psDNA) containing a terminal alkylthiolgrou...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2015